

LA-UR-14-26956

Approved for public release; distribution is unlimited.

A New On-the-Fly Sampling Method for Incoherent Inelastic Thermal Neutron Scattering Data in MCNP6 Title:

Author(s): Pavlou, Andrew Theodore

Brown, Forrest B.

Ji, Wei

Intended for: MCNP documentation, summer research work

Issued: 2014-09-05

A New On-the-Fly Sampling Method for Incoherent Inelastic Thermal Neutron Scattering Data in MCNP6

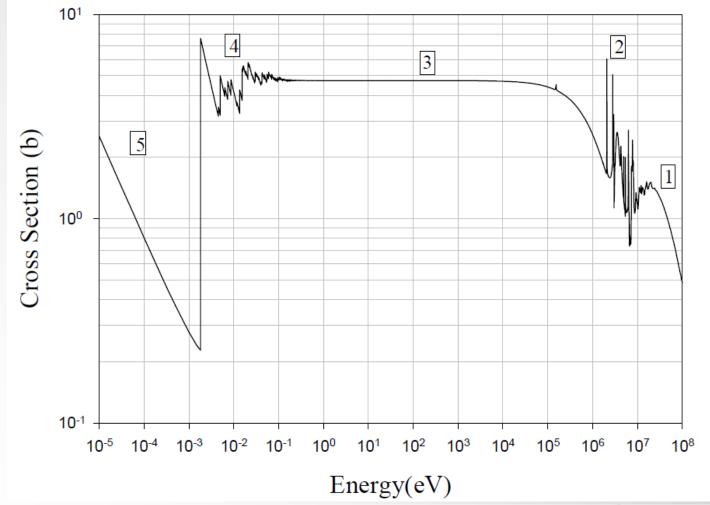
Andrew T. Pavlou, Forrest B. Brown* & Wei Ji

Rensselaer Polytechnic Institute
Department of Mechanical, Aerospace and Nuclear Engineering
Nuclear Engineering Advanced Modeling and Simulation (NEAMS) Group

*Los Alamos National Laboratory Monte Carlo Codes Group, XCP-3 X Computational Physics Division

Presentation for the XCP-3 Group at Los Alamos National Laboratory

August 20, 2014

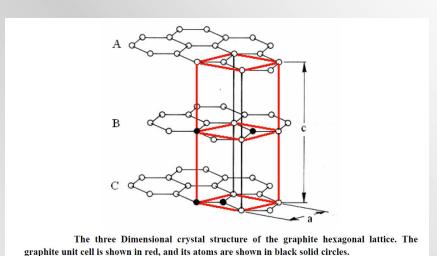

- Background: Neutron Scattering at Thermal Energies
- New On-the-Fly Sampling Method
- Preliminary Results for Graphite
 - <u>Eigenvalue</u>: Fuel Compact Benchmarks
 - Surface Current: "Broomstick" Benchmark
- Conclusions
- Next Steps

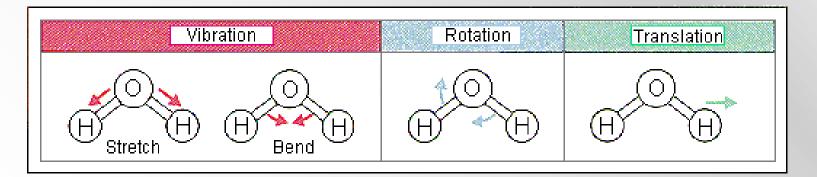
- Background: Neutron Scattering at Thermal Energies
- New On-the-Fly Sampling Method
- Preliminary Results for Graphite
 - <u>Eigenvalue</u>: Fuel Compact Benchmarks
 - Surface Current: "Broomstick" Benchmark
- Conclusions
- Next Steps

Thermal Neutron Scattering in Graphite

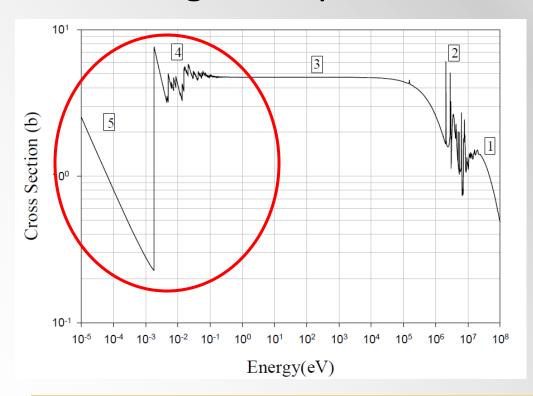
Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method Preliminary Results for Graphite Conclusions Next Steps


Thermal Neutron Scattering with Materials


Thermal neutrons interacting with bound isotopes

 Vibrational, rotational and translational modes (correlated with temperature) affect the scattered neutron energy and angle of scatter after collision


Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method Preliminary Results for Graphite Conclusions Next Steps

Thermal Neutron Scattering in Graphite

Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method Preliminary Results for Graphite Conclusions Next Steps

- Region 4: Neutron wavelengths are comparable to interatomic spacing
 - Interactions now take place with a collection of atoms
 - Coherent elastic scattering dominates
- Region 5: Neutron wavelength is larger than the interatomic spacing
 - Incoherent inelastic scattering

Our focus is on incoherent inelastic scattering

<u>Incoherent</u>: ignore interference effects between neutron and target where scattering from different planes of atoms can interfere as neutron wavelength hits different atomic spacings

<u>Inelastic</u>: neutron scatters through a range of energies and angles

Thermal Neutron Scattering with Materials

Background: Neutron Scattering at Thermal Energies

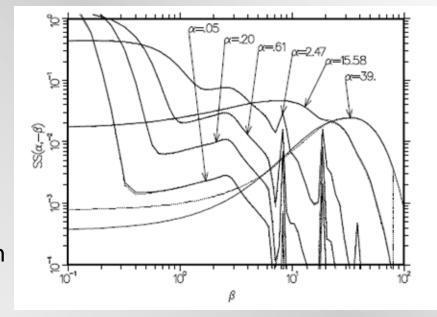
New On-the-Fly Sampling Method Preliminary Results for Graphite Conclusions Next Steps

The double differential cross section:

$$\sigma(E \to E', \mu, T) = \frac{\sigma_b}{2kT} \sqrt{\frac{E'}{E}} e^{-\beta/2} S(\alpha, \beta, T)$$

where:

E, E': pre- and post-collision energy


 μ : cosine of the scattering angle

 σ_b : bound atom scattering cross section

k: Boltzmann constant

T: temperature

 $S(\alpha, \beta, T)$: symmetric form of the scattering law

Background: Neutron Scattering at Thermal Energies

Thermal Neutron Scattering Data Storage

New On-the-Fly Sampling Method Preliminary Results for Graphite Conclusions Next Steps

$$\sigma(E \to E', \mu, T) = \frac{\sigma_b}{2kT} \sqrt{\frac{E'}{E}} e^{-\beta/2} S(\alpha, \beta, T)$$

 \bullet and β are dimensionless quantities representing:

α: momentum transfer

$$\alpha = \frac{E + E' - 2\mu\sqrt{EE'}}{A_0kT}$$

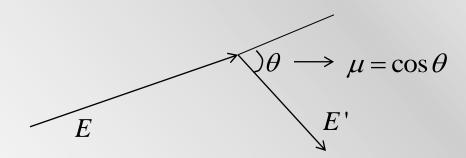
β: energy transfer

$$\beta = \frac{E' - E}{kT}$$

• $S(\alpha,\beta)$ ACE datasets from NJOY are large, even for a <u>single temperature</u>:

Material	File Size [MB]
Graphite	24
Water	24.9
U in UO ₂	50
O_2 in UO_2	75
Zr in ZrH	56
H in ZrH	116

- Background: Neutron Scattering at Thermal Energies
- New On-the-Fly Sampling Method
- Preliminary Results for Graphite
 - <u>Eigenvalue</u>: Fuel Compact Benchmarks
 - <u>Surface Current</u>: "Broomstick" Benchmark
- Conclusions
- Next Steps


New OTF Strategy at Thermal Energies

Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method

Preliminary Results for Graphite
Conclusions
Next Steps

General Monte Carlo sampling procedure for a scattering event

• E' and μ are random variables and are described by probability density functions (PDFs)

$$f(E'|E,T)$$
 $g(\mu|E \rightarrow E',T)$

Cumulative distribution functions (CDFs) are provided in the MC code

$$F(E'|E,T)$$
 $G(\mu|E \rightarrow E',T)$

New OTF Strategy at Thermal Energies

Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method

Preliminary Results for Graphite
Conclusions
Next Steps

Sample ξ between 0 and 1 and let

$$\xi = F(E'|E,T)$$

Then

$$E' = F^{-1}\left(\xi \mid E, T\right)$$

- The sampled E' is a function of T given the known incoming energy E and the sampled ξ . That is, $E'(T|E,\xi)$.
- If we can obtain such a functional expression at different incoming energies and CDF values, we can easily on-the-fly sample the outgoing energy

New OTF Strategy at Thermal Energies

Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method

Preliminary Results for Graphite Conclusions

Next Steps

The Monte Carlo sampling procedure is quite simple:

Sample ξ between [0,1] and then calculate E' based on the expression E'(T|E, ξ) at any temperature.

• Same procedure can be applied to on-the-fly sample μ at any temperature.

$$E'(T|E, \xi)$$
?

$$\mu(T|E\rightarrow E', \xi)$$
?

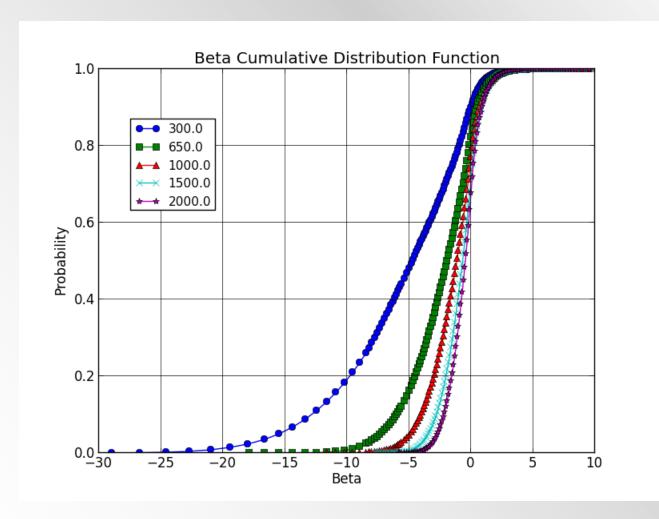
Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method

Preliminary Results for Graphite
Conclusions
Next Steps

Our Approach

- Current Monte Carlo codes store CDF values in α and β based on $S(\alpha, \beta, T)$ data at a single temperature
 - 1) α and β are sampled from the CDF at the designated temperature
 - 2) Linear interpolation in α and β CDFs is used between tabulated values
 - 3) Scattered energy and angle are calculated from the definitions of α and β
- Our approach: Examine the temperature dependence of α and β CDFs at selected discrete CDF values
 - Regression analysis performed to find the best temperature fit for a range of temperatures and thermal energies
 - Coefficients of the fits are stored instead of $S(\alpha,\beta,T)$ data; used to sample scattered energy and angle


Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method

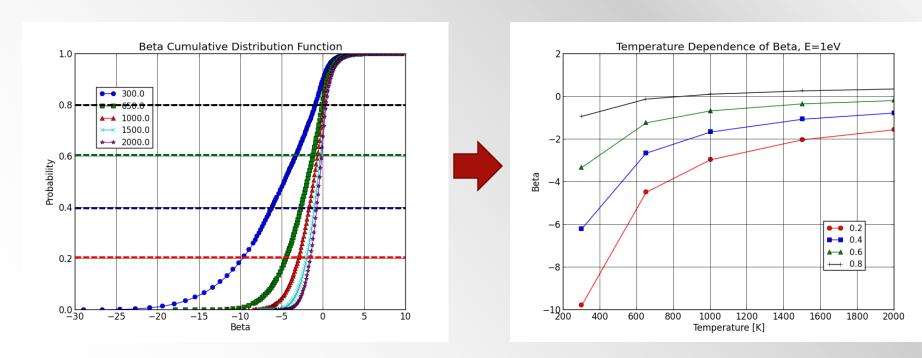
Preliminary Results for Graphite Conclusions Next Steps

β CDF Example

(simplified)

β CDF Example

(simplified)

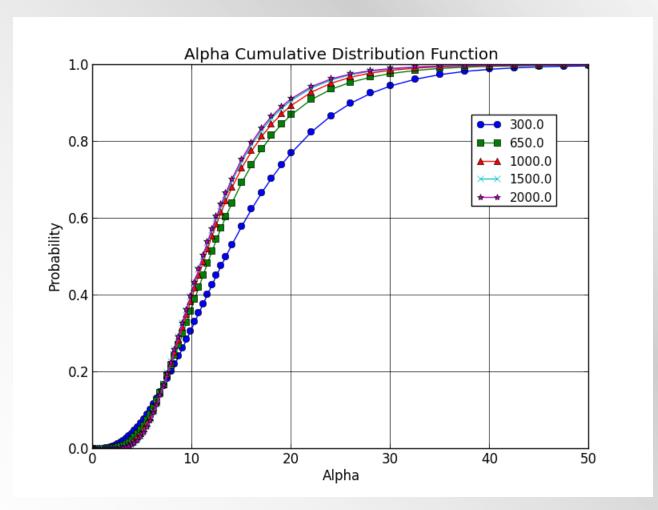

- Example for Graphite at E = 1 eV for
 - T mesh [300, 650, 1000, 1500, 2000]K
 - B CDF probability line mesh [0.2, 0.4, 0.6, 0.8]

Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method

Preliminary Results for Graphite
Conclusions
Next Steps

$$\beta(T) \approx \sum_{n=0}^{2} a_n \left(\sqrt{T} \right)^{-n}$$


Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method

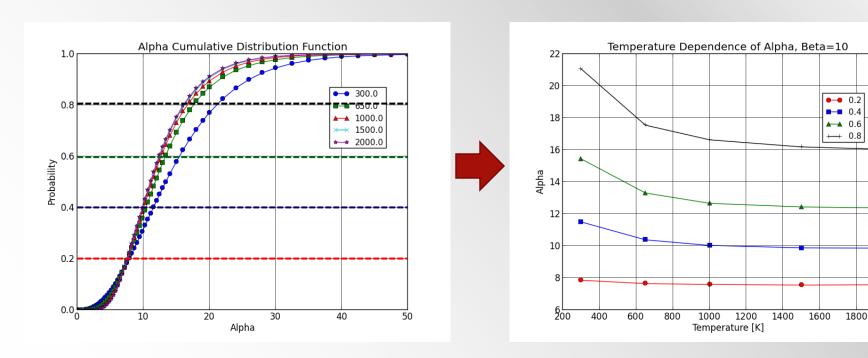
Preliminary Results for Graphite Conclusions Next Steps

α CDF Example

(simplified)

α CDF Example

(simplified)


- Example for Graphite at $\beta = 10$ for
 - T mesh [300, 650, 1000, 1500, 2000]K
 - α CDF probability line mesh [0.2, 0.4, 0.6, 0.8]

Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method

Preliminary Results for Graphite Conclusions Next Steps

$$\alpha(T) \approx \sum_{n=0}^{4} a_n T^{-n}$$

Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method

Preliminary Results for Graphite
Conclusions
Next Steps

Total Data Storage

- For Graphite:
 - β coefficients: 190 kBα coefficients: 271 kB

461 kB

- Assuming cross section data needed at ~100 temperatures for a problem:
 - Graphite: data storage reduction of around <u>5,331x</u>

Sampl	ing	βtr	om
Coeffi	cien	t Fi	le

ENERGY _i	a _{n,1}	a _{n,2}	a _{n,3}
P ₁	a ₁₁	a ₁₂	a ₁₃
P ₂	a ₂₁	a ₂₂	a ₂₃
P_3	a ₃₁	a ₃₂	a ₃₃
 D			
P _N	a _{n1}	a _{n2}	a _{n3}

a _{n,1}	a _{n,2}	a _{n,3}
a ₁₁	a ₁₂	a ₁₃
a ₂₁	a ₂₂	a ₂₃
a ₃₁	a ₃₂	a ₃₃
•••	•••	•••
a _{n1}	a _{n2}	a _{n3}
	a ₁₁ a ₂₁ a ₃₁	a ₁₁ a ₁₂ a ₂₁ a ₂₂ a ₃₁ a ₃₂

ENERGY _N	a _{n,1}	a _{n,2}	a _{n,3}
P_1	a ₁₁	a ₁₂	a ₁₃
P ₂	a ₂₁	a ₂₂	a ₂₃
P ₃	a ₃₁	a ₃₂	a ₃₃
		•••	•••
P _N	a _{n1}	a_{n2}	a _{n3}

Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method

Preliminary Results for Graphite Conclusions **Next Steps**

Sampling Procedure:

1) Use incident energy to determine appropriate section of file

$$E_i < E < E_{i+1}$$

Sample probability line 2)

$$P_i < \xi < P_{i+1}$$

3) Use temperature to calculate β at:

$$(E_i, P_i), (E_i, P_{i+1}), (E_{i+1}, P_i), (E_{i+1}, P_{i+1})$$

4) Linearly interpolate between four sets to obtain sampled β

Sampling α from Coefficient File

β_{i}	a _{n,1}	a _{n,2}	a _{n,3}
P_1	a ₁₁	a ₁₂	a ₁₃
P_2	a ₂₁	a ₂₂	a ₂₃
P_3	a ₃₁	a ₃₂	a ₃₃
 D		•••	•••
P _N	a _{n1}	a_{n2}	a _{n3}
B _{i+1}	a _{n,1}	a _{n,2}	a _{n,3}
B _{i+1}	a _{n,1}	a _{n,2}	a _{n,3}
P ₁	a ₁₁	a ₁₂	a ₁₃
P ₁ P ₂	a ₁₁ a ₂₁	a ₁₂ a ₂₂	a ₁₃ a ₂₃

β_N	a _{n,1}	a _{n,2}	a _{n,3}
P_1	a ₁₁	a ₁₂	a ₁₃
P ₂	a ₂₁	a ₂₂	a ₂₃
P ₃	a ₃₁	a ₃₂	a ₃₃
 D			
P_{N}	a _{n1}	a _{n2}	a _{n3}

Background: Neutron Scattering at Thermal Energies

New On-the-Fly Sampling Method

Preliminary Results for Graphite
Conclusions
Next Steps

Sampling Procedure:

Use sampled beta to determine appropriate section of file

$$\beta_i < \beta < \beta_{i+1}$$

2) Sample probability line

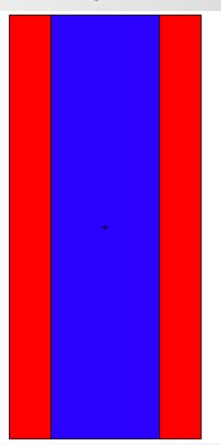
$$P_i < \xi < P_{i+1}$$

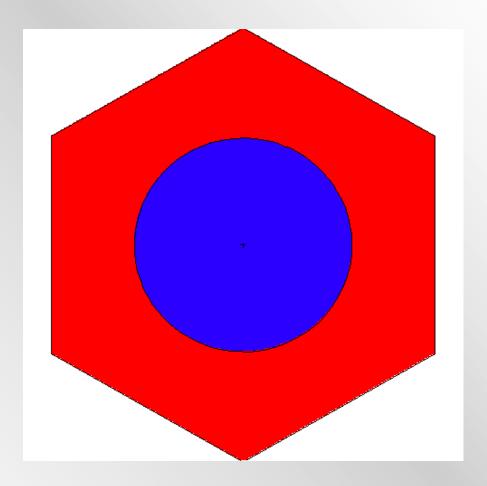
- 3) Calculate α bounds based on incident energy and sampled β . Then, adjust ξ to the bounds
- 4) Use temperature to calculate α at:

$$(\beta_i, P_i), (\beta_i, P_{i+1}), (\beta_{i+1}, P_i), (\beta_{i+1}, P_{i+1})$$

5) Linearly interpolate between four sets to obtain sampled β

- Background: Neutron Scattering at Thermal Energies
- New On-the-Fly Sampling Method
- Preliminary Results for Graphite
 - <u>Eigenvalue</u>: Fuel Compact Benchmarks
 - <u>Surface Current</u>: "Broomstick" Benchmark
- Conclusions
- Next Steps

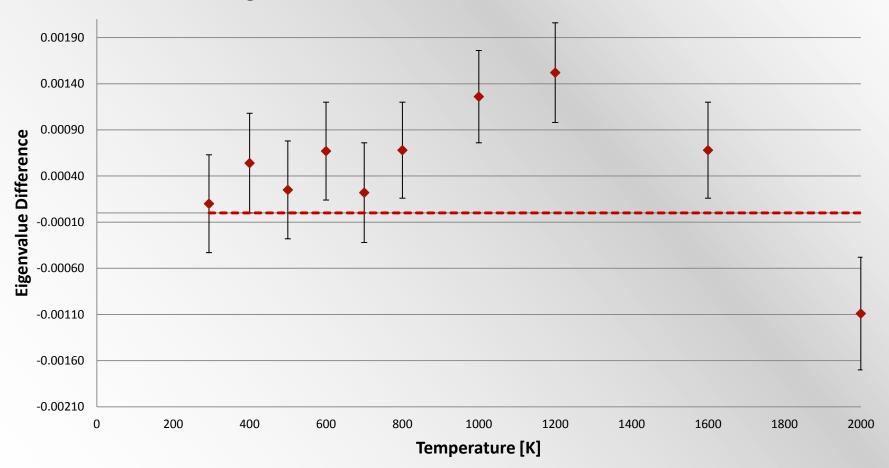

- Background: Neutron Scattering at Thermal Energies
- New On-the-Fly Sampling Method
- Preliminary Results for Graphite
 - <u>Eigenvalue</u>: Fuel Compact Benchmarks
 - Surface Current: "Broomstick" Benchmark
- Conclusions
- Next Steps


NGNP Homogeneous Fuel Compact

Background: Neutron Scattering at Thermal Energies
New On-the-Fly Sampling Method

Preliminary Results for Graphite

Conclusions Next Steps


Background: Neutron Scattering at Thermal Energies
New On-the-Fly Sampling Method

Preliminary Results for Graphite

Conclusions Next Steps

Eigenvalue Results

Eigenvalue Differences - Traditional vs. OTF

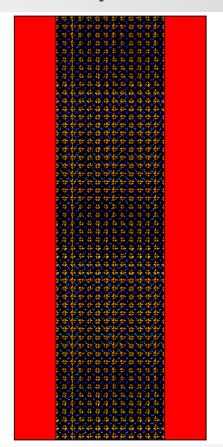
Background: Neutron Scattering at Thermal Energies
New On-the-Fly Sampling Method

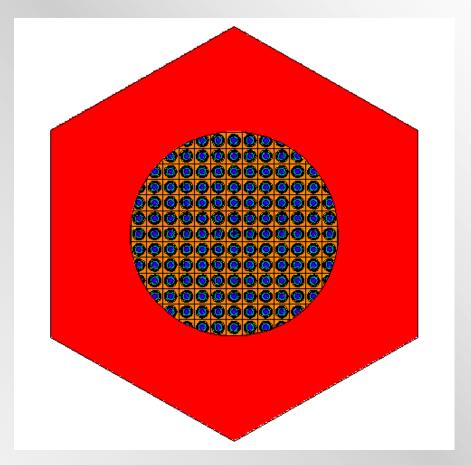
Preliminary Results for Graphite

Conclusions Next Steps

Eigenvalue Results

	Traditional S(α,β)	OTF S(α,β)	Relative Difference
293.6 K	1.28625(37)	1.28615(38)	0.00010(53)
400 K	1.28397(40)	1.28343(37)	0.00054(54)
500 K	1.28165(37)	1.28140(38)	0.00025(53)
600 K	1.27950(37)	1.27883(38)	0.00067(53)
700 K	1.27658(37)	1.27636(39)	0.00022(54)
800 K	1.27449(36)	1.27381(37)	0.00068(52)
1000 K	1.27147(35)	1.27021(36)	0.00126(50)
1200 K	1.26768(38)	1.26616(38)	0.00152(54)
1600 K	1.26164(39)	1.26096(35)	0.00068(52)
2000 K	1.25570(37)	1.25679(37)	-0.00109(52)


No S(α , β) Treatment: k = 1.29119(37)

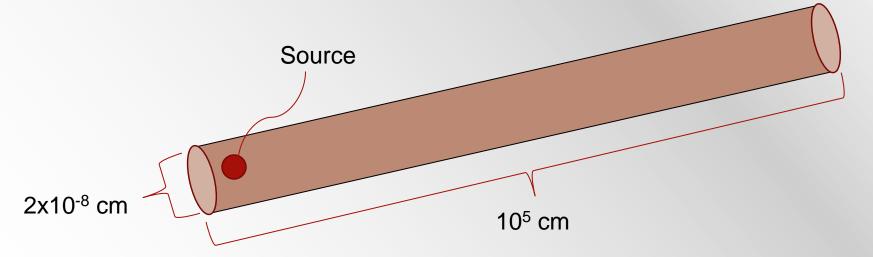

NGNP Heterogeneous Fuel Compact

Background: Neutron Scattering at Thermal Energies
New On-the-Fly Sampling Method

Preliminary Results for Graphite
Conclusions

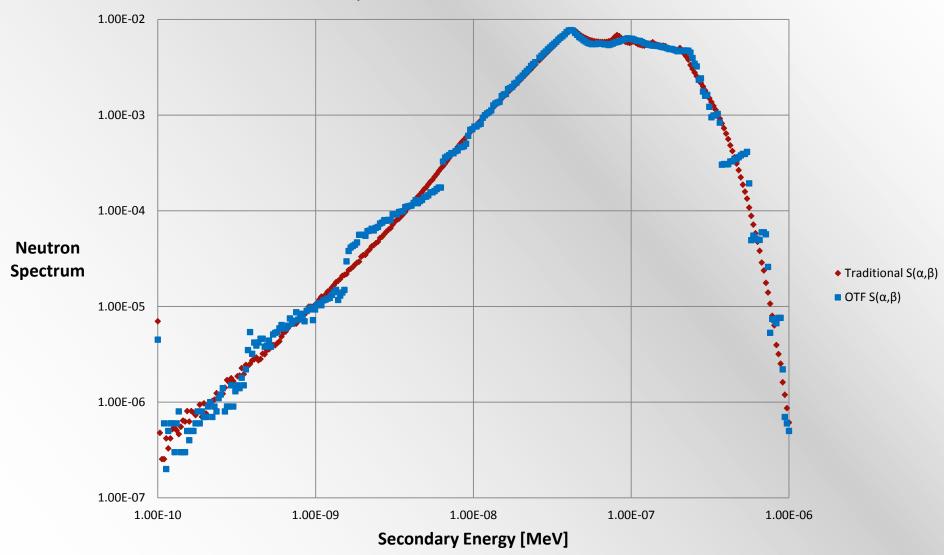
Next Steps

- Background: Neutron Scattering at Thermal Energies
- New On-the-Fly Sampling Method
- Preliminary Results for Graphite
 - <u>Eigenvalue</u>: Fuel Compact Benchmarks
 - Surface Current: "Broomstick" Benchmark
- Conclusions
- Next Steps


Background: Neutron Scattering at Thermal Energies
New On-the-Fly Sampling Method

Preliminary Results for Graphite

Conclusions Next Steps


Broomstick Benchmark Problem

- Very thin, very long cylinder with monoenergetic source along axis
- Vacuum outside cylinder
- Tallies taken on planes perpendicular to cylinder
- Capable of detecting single scatterers very sensitive to $S(\alpha,\beta)$

Broomstick Problem: Secondary Neutron Spectrum

Graphite: 2000K, E = 0.0253 eV

- Introduction and Background
- Construction of Energy and Momentum Transfer PDFs/CDFs
- Temperature Dependence of the CDFs
- Functional Fittings of the Temperature-Dependent CDFs
- Conclusions and Future Work

Summary

Background: Neutron Scattering at Thermal Energies
New On-the-Fly Sampling Method
Preliminary Results for Graphite

Conclusions

Next Steps

- On-the-fly sampling methods have been developed to reduce cross section storage for Monte Carlo codes
- Temperature dependence of $S(\alpha, \beta, T)$ data <u>cannot</u> be fit with functions
- Our work examines the temperature dependence of CDFs in energy transfer (β) and momentum transfer (α)
- The neutron's outgoing energy and flight angle after a thermal scattering event at an arbitrary temperature are sampled on-the-fly
 - Eliminates the need to store $S(\alpha, \beta, T)$ data at discrete temperatures
- Preliminary benchmark tests show good agreement at specific temperatures and energies – <u>many improvements still need to be made</u>
- Total storage of coefficients is <u>461 kB</u> for graphite (includes all temps)
 - Current storage method is <u>24 MB per temperature</u>

Future Work

Background: Neutron Scattering at Thermal Energies
New On-the-Fly Sampling Method
Preliminary Results for Graphite
Conclusions

Next Steps

- Optimize the energy, temperature and CDF probability meshes
 - Choose values such that linear interpolation between values gives good results within some fractional tolerance
 - May need finer meshes in certain regions and coarser meshes elsewhere dependent on phonon frequency distribution
- Examine more basis functions for the regression analysis
 - Is there a link between the basis function and the underlying physics in the thermal energy range?
- Extend analysis to other moderator materials
- Test the coefficients in a <u>realistic</u> reactor problem to see how eigenvalue, flux, coefficients of reactivity, etc. are affected by small differences in scattered energy and flight angle

References

- G. Yesilyurt, W. Ji, S. Prasad, W.R. Martin, J.C. Lee, "Coupled Nuclear-Thermal-Hydraulics Analysis for VHTR", Trans. Am. Nucl. Soc., Vol. 96, pp. 580-581 (2007)
- X-5 Monte Carlo Team, "MCNP—A General Monte Carlo N-Particle Transport Code, Version 5", Los Alamos National Laboratory Report LA-UR-03-1987 (2003)
- G. Yesilyurt, W.R. Martin, F.B. Brown, "On-the-Fly Doppler Broadening for Monte Carlo Codes", *Nucl. Sci. Eng.*, **Vol. 171**, pp. 239 257 (2012)
- T. Viitanen, J. Leppänen, "Explicit Treatment of Thermal Motion in Continuous-Energy Monte Carlo Tracking Routines", *Nucl. Sci. Eng.*, **Vol. 171**, pp. 165-173 (2012)
- B. Becker, R. Dagan, G. Lohnert, "Proof and Implementation of the Stochastic Formula for Ideal Gas, Energy Dependent Scattering Kernel", *Annals of Nuclear Energy*, **Vol. 36**, pp. 470-474 (2009)
- D. Lee, K. Smith, J. Rhodes, "The Impact of U-238 Resonance Elastic Scattering Approximations on Thermal Reactor Doppler Reactivity", *Annals of Nuclear Energy*, **Vol. 36**, pp. 274-280 (2009)
- L.L. Carter, E.D. Cashwell, "Particle Transport Simulation with the Monte Carlo Method", **TI D-26607**, Los Alamos National Laboratory (1975)
- E.E. Sunny, W.R. Martin, "On-the-Fly Generation of Differential Resonance Scattering Probability Distribution Functions for Monte Carlo Codes", Proc. of the International Conference on *Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013)*, Sun Valley, Idaho (2013)
- F.B. Brown, W.R. Martin, G. Yesilyurt, S. Wilderman, "On-the-Fly Neutron Doppler Broadening for MCNP", Los Alamos National Laboratory Report LA-UR-12-00700 (2012)
- J.U. Koppel, J.R. Triplett, Y.D. Naliboff, "GASKET—A Unified Code for Thermal Neutron Scattering", General Atomic Division of General Dynamics Report GA-7417 (1967)

References

- R.E. MacFarlane, et al., "The NJOY Nuclear Data Processing System, Version 2013", Los Alamos National Laboratory Report LA-UR-12-27079 (2012)
- F.G. Bischoff, M.L. Yeater, "Monte Carlo Evaluation of Multiple Scattering and Resolution Effects in Double-Differential Neutron Scattering Cross-Section Measurements", *Nucl. Sci. Eng.*, **Vol. 48**, pp. 266 280 (1972)
- T.M. Sutton, T.H. Trumbull, C.R. Lubitz, "Comparison of Some Monte Carlo Models for Bound Hydrogen Scattering", Proc. of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2009), Saratoga Springs, New York (2009)
- C.T. Ballinger, "The Direct $S(\alpha,\beta)$ Method for Thermal Neutron Scattering", Knolls Atomic Power Laboratory, Schenectady, New York (1994)
- T.M. Sutton, et al., "The MC21 Monte Carlo Transport Code", Proc. of the Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, California (2007)
- A.T. Pavlou, F.B. Brown, W.R. Martin, B.C. Kiedrowski, "Comparison of Discrete and Continuous Thermal Neutron Scattering Treatments in MCNP5", Proc. of PHYSOR 2012 - Advances in Reactor Physics, Knoxville, Tennessee (2012)
- K.A. Terrani, "Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors", University of California, Berkley Doctoral Dissertation (2010)
- R.B. Vilim, E.E. Feldman, W.D. Pointer, T.Y.C. Wei, "Initial VHTR Accident Scenario Classification: Models and Data", Argonne National Laboratory, Nuclear Engineering Division Status Report (2004)
- Private Communication with Forrest Brown, Los Alamos National Laboratory.
- CSEWG, "ENDF-6 Formats Manual", Brookhaven National Laboratory Report BNL-90365-2009 Rev. 2 (2011)
- I.E. Frank, R. Todeschini, "The Data Analysis Handbook (Data Handling in Science and Technology)", Elsevier Science (1994)